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Abstract
Experimental studies show that the rate of electron diffusion in mesoporous
nanocrystalline TiO2 may depend on the electrolyte concentration. In the
available literature, this effect is attributed to ambipolar diffusion. We present
arguments and a kinetic model indicating that it might instead be connected
with different arrangements of cations near the traps occupied by an electron
before and after tunnelling. With a reasonable choice of the ratio of the kinetic
parameters, in agreement with experiment, the model predicts that the electron
diffusion coefficient at high electrolyte concentrations may be about five times
higher than at low concentrations.

1. Introduction

The understanding of electron transport in mesoporous nanocrystalline electrolyte-soaked TiO2

(with a grain size in the range of 10–80 nm) is of interest for applications in photochemical solar
cells [1]. At present, this process is believed to occur via electron tunnelling between traps of
different depths, leading to a distribution of jump rates. Due to the small size of the TiO2 grains,
electrons seem to migrate primarily by jumping via the surface states [2] and the migration
rate may therefore depend on the ion concentration in the electrolyte outside the grains [3].
For example [3], the electron diffusion coefficient may exhibit about a fivefold increase upon
increasing the molarity of the electrolyte from 20 to 500 mM. The current interpretation of
these and other experimental findings is based on several complementary models, focused on
the energy distribution of bandgap states [4], traps at the surface of grains [5], percolative
properties of the grains [6], and/or interplay of the ion and electron diffusion [7, 8]. The latter
factor, introduced in order to explain the dependence of the electron migration rate on the
electrolyte composition, has been treated in terms of ambipolar diffusion [7, 8]. In the present
paper, we show that the applicability of this concept to electron transport in TiO2 is far from
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obvious and propose an alternative explanation of the electrolyte-related effects. In addition,
we briefly discuss how one can experimentally distinguish between the conventional ambipolar
diffusion model and our model.

2. Ambipolar diffusion

The theory of ambipolar diffusion is explicitly based on the mean-field (MF) approximation
and the quasi-neutrality (QN) condition [9]. In condensed media, these approximations usually
hold on the mesoscopic scale (>100 nm). This does not guarantee however that the theory
of ambipolar diffusion is really applicable in the case under consideration, because the MF
approximation and QN condition can be fulfilled in other versions of the theory as well.
Scrutinizing the concept of ambipolar diffusion, one can find that it implies the applicability
of the MF approximation not only on the mesoscopic scale but on shorter distances as well,
because the ambipolar diffusion coefficient, corresponding to collective diffusion of electrons
and ions, is expressed via the phenomenological coefficients of independent diffusion of
electrons and ions. In the system under consideration, the concentration of diffusing electrons
is low (typically lower than or about 2 × 1018 cm−3 [7]). This means that interaction
between electrons is weak and the screening of an electron trapped to the surface state takes
place primarily due to its interaction with a single nearest-neighbour cation. In addition,
electron tunnelling jumps occur in fact instantaneously. Such events are accompanied by local
relaxation of the medium but the ions are not able to jump together with an electron. Physically,
it is clear that this situation is far from the MF case and accordingly one should describe the
electron–ion interaction in more detail in order to understand the electron diffusion specifics.

3. Model including local electron–ion interaction

To treat the problem, one can use the master equations taking into account electron jumps
and medium reconfiguration. This approach is usually cumbersome and often contains many
parameters which can hardly be quantified for the present case. To make the presentation
more transparent, we employ a generic model containing a minimal number of parameters. In
particular, the tunnelling electron transport is assumed to occur primarily via traps located at
the solid–electrolyte interface. The traps are described by using a four-state approximation.
Specifically, each trap can (i) be unoccupied (no electron in the trap) and with no cation nearby,
(ii) be unoccupied but with a cation nearby, (iii) be occupied (an electron is in the trap) and
with no cation nearby, and (iv) be occupied with a cation nearby. Focusing on the simplest
situation when the electron concentration is low, we neglect electron–electron interaction and
analyse diffusion of single electrons (the interference of electrons can be incorporated into the
model in line with earlier work [4], but this is beyond our present scope). In this case, the
jumps of an electron, located in trap i , to adjacent vacant traps, are described by

dP0/dt = −
∑

j �=i

(k j
00 p j

0 + k j
01 p j

1)P0 + v10 P1 − v01cP0, (1)

dP1/dt = −
∑

j �=i

(k j
10 p j

0 + k j
11 p j

1)P1 − v10 P1 + v01cP0, (2)

where P0 and P1 are the probabilities that trap i is in states (iii) and (iv), p j
0 and p j

1 are the
probabilities that vacant trap j is in states (i) and (ii), k j

00, k j
01, k j

10, and k j
11 are the tunnelling

rate constants (the rate-constant subscripts are interconnected with those of the trap-state
probabilities and accordingly indicate the trap states before and after electron tunnelling),
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v01 and v10 are the cation attachment and detachment rate constants, and c is the cation
concentration.

In general, equations (1) and (2) should be complemented by terms taking into account
the electron jumps back from traps j to trap i and then solved together with similar equations
for other traps. Skipping a full-scale analysis of this problem, we analyse a special case which
can be treated analytically. Specifically, we assume that the cation attachment and detachment
are relatively rapid and accordingly close to a steady state, i.e.,

v10 P1 � v01cP0. (3)

By definition, the total probability that trap i has an electron is P = P0 + P1. Using this
relationship in combination with equation (3) yields

P0 = Pv10/(v10 + v01c), (4)

P1 = Pv01c/(v10 + v01c). (5)

For p j
0 and p j

1 , we have p j
0 + p j

1 = 1, and accordingly these probabilities can be represented
in analogy with equations (4) and (5) as

p0 = w10/(w10 + w01c), (6)

p1 = w01c/(w10 + w01c), (7)

where w01 and w10 are the corresponding rate constants of cation attachment and detachment.
Substituting expressions (4)–(7) into equations (1) and (2) and then combining the left- and

right-hand parts of the latter equations results in

dP/dt = −
∑

j �=i

r j P, (8)

where r j is the effective rate constant of electron jumps from trap i to trap j , defined by

r j = r j
00 + r j

01 + r j
10 + r j

11, (9)

with

r j
00 = k j

00v10w10

(v10 + v01c)(w10 + w01c)
, (10)

r j
01 = k j

01v10w01c

(v10 + v01c)(w10 + w01c)
, (11)

r j
10 = k j

10v01w10c

(v10 + v01c)(w10 + w01c)
, (12)

r j
11 = k j

11v01w01c2

(v10 + v01c)(w10 + w01c)
. (13)

The electron diffusion coefficient depends on the distribution of traps and also on the
distribution of the effective jump rate constants. For a given distribution of traps, one can
find rate-determining jumps such that the diffusion coefficient will be proportional to the
rate constants of these jumps. Thus, the dependence of the effective jump rate constants on
the cation concentration (equations (9)–(13)) characterizes the dependence of the diffusion
coefficient on this concentration.

4. Model predictions

Our model presented above is conceptually and mathematically simple. It contains the minimal
number of kinetic parameters needed in order to describe the physics introduced. The number
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Figure 1. Effective jump rate constant, r j , and its components, r j
00, r j

01, and r j
10 + r j

11, as a function

of the electrolyte concentration. All the values are normalized to k j
00. (Note that the value of

r j
10 + r j

11 is small and the corresponding curve is nearly invisible.)

of the parameters is however apparently rather large and at present they can hardly be obtained
from experiment. Nevertheless, the final results (equations (9)–(13)) depend only on ratios of
the parameters, and accordingly the situation with validation of the parameters is really not
so severe as it might seem at first sight. To illustrate the model predictions, it is instructive to
show the dependence of r j (equation (9)) on c for presumably reasonable ratios of various rate
constants in expressions (10)–(13).

To validate the choice of the model parameters, it is appropriate to recall that the ratio
of the tunnelling rate constants is expected to depend first of all on the energetics of jumps.
In particular, the famous Marcus theory [10] predicts that the jump rate is proportional to
exp[−(Er − J )2/(4ErkBT )], where Er is the reorganization energy of the medium, and J the
reaction exothermicity. Typically, the reorganization energy is appreciable, Er � 1 eV >|J |.
In this so-called ‘normal’ region, the jump rate increases with increasing J .

The situations when an electron has or has no cation nearby both in the initial and final
states are more or less equivalent, and accordingly we use k j

11/k j
00 = 1. The jumps in the

cases when an electron has a cation nearby in the initial state and does not contact a cation in
the final state are energetically less favourable (i.e., J < 0), and we employ k j

10/k j
00 = 0.01.

The situation when an electron has no cation nearby before a jump and contacts a cation after
a jump is energetically more favourable (J > 0), and we put k j

01/k j
00 = 100. The presence of

an electron on a trap makes the location of a cation nearby more probable. Thus, we should
have v01/v10 > w01/w10. To be specific, we use v01/v10 = 1 M−1 and w01/w10 = 0.1 M−1.

With the parameters above, the effective jump rate constant (figure 1) exhibits a five times
increase with increasing ion concentration, c, from zero to 1 M. Quantitatively, this effect
is similar to that observed experimentally [3]. Physically, the increase of the effective jump
rate is related to more favourable conditions for electron tunnelling in the situations when
an electron has no cation nearby before the jump and contacts a cation after the jump. With
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increasing c, the corresponding contribution, r j
01, to the effective jump rate constant rapidly

becomes dominating. The important point is that this term has little in common with ambipolar
diffusion, because it cannot be expressed via the phenomenological coefficients of independent
diffusion of electrons and ions.

5. Conclusion

In summary, we have illustrated that the dependence of the rate of electron diffusion in
mesoporous nanocrystalline TiO2 on electrolyte concentration is probably related to different
arrangements of cations near the traps occupied by an electron before and after tunnelling.

Finally, we may briefly comment on how one can experimentally distinguish between the
conventional ambipolar diffusion model and our model. Physically, it is clear that in the limit
when the electrolyte concentration is high and the electron diffusion is controlled by electron
jumps the two models can hardly be discriminated. If however the electrolyte influences the
electron diffusion, the temperature dependences of the apparent electron diffusion coefficients
predicted by the two models are different. Specifically, the ambipolar diffusion model indicates
that the temperature dependence of the electron diffusion coefficient should coincide with that
of the electrolyte diffusion [7]. In contrast, our model does not directly relate these two
temperature dependences. This difference can be used as the simplest indicator of what is
going on.
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